#### **DISI: Statistics Lecture**

#### Are you...Left-Handed?

• Please download the data set from (updated: last night) hci.rwth-aachen.de/stats4dis

- We need you for a user study on interactive tabletop!
- The study takes half an hour to complete.
- Leave me your name or email to

Theory

constraints, types of knowledge,

 $\checkmark$  Models of interaction

 $\checkmark$  Affordances, mappings,

 $\checkmark$  Human cognition and

 $\checkmark$  Interaction design notation

errors

✓ Design principles

performance

Norbert Dumont norbert.dumont@gmail.com



#### Review

- What are four phases of technology lifecycle proposed by David Liddle and Jan Borchers
  - Where is the sweet spot? What is its implication?
- What is "multimodal interface"? Give an example
- What is the difference between virtual reality and augmented reality?
- Three classes of devices in an ubiquitous computing environment?



DIS 1 — Ian Borchers



Practice

media computing group

#### ✓ Sketching

- $\checkmark$  User observation
- $\checkmark$  Iterative design
- ✓ Prototyping
- ✓ Ideation
- $\Rightarrow$ User studies and evaluation



DIS 1 — Jan Borchers

#### A Rough Guide to Research

- A hunch or a research question: ideas or problem that you are interested in
- Literature review: How does existing research address these questions?
- Qualitative findings: observing users, testing prototypes, surveys
- Descriptive results: explain what happened, and what users said
- Correlational results: numerical, indicate if there is a correlation
- Experiments: controlled environment, verify causal relationship
- Analysis, discussion, and conclusion
- Publication: Share your knowledge; contribute to the science



#### **Review: Controlled Experiments**

- Research question: On a mobile phone, is typing faster using *physical keys* compared to using a touchscreen and your *fingers* or a *stylus*?
- Research hypothesis?
- Variables?
- Experimental design?
- Expected data?

| DIS 1 — Jan Borche <u>rs</u> | 6 | media computing group 🚏 🖤 |
|------------------------------|---|---------------------------|
|                              |   | 0011000                   |

#### Mobile Phone Text Input Example

- Research question: On a mobile phone, is typing faster using *physical keys* compared to using a touchscreen and your *fingers* or a *stylus*?
- IV: keyboard types: {physical, stylus, touch}
- DV: time in seconds for typing a specified sentence.
- Begin: when the user presses the first key
- End: when the user presses Enter
- Design: between-groups
- Each keyboard is tested by 20 participants
- Each participant types the sentence only one time (one trial)



#### Variance of Real Data

- Data from experiments is noisy
- Effect:Variance caused by the different levels of our IV
- Confound:Variance caused by uncontrolled factors ("confounding variables")



DIS 1 — Jan Borche<u>rs</u>

DIS 1 — Jan Borchers

### **NHST: Null Hypothesis** Significance Testing

- Assuming that there is no effect of IV (i.e., null hypothesis is true)
- E.g., keyboard type does not affect completion time
- Then what is the probability that our measurements would occur?  $\Rightarrow p$  value
- E.g., *p* = 0.023:

"If keyboard type does not affect compleation time, then there would be a 2.3% probability that our measurement turns out as it did."

• 0.05 is generally considered the *de facto* cutoff level of p for statistical significance

DIS 1 — Jan Borchers



#### ANOVA: Analysis of Variance

- Goal: partition the variance from different sources
- Method: fit different models and determine how good the models explain the data
- One extreme: explain each data point with one Darameter
- Another extreme: all data can be represented by a single mean  $\Rightarrow$  no effect
- Determine just adequate model that fits the data
- One-Way ANOVA: one IV, between-groups

DIS 1 — Jan Borchers



Maximal model (each data point is one parameter)



A candidate model



#### Null model (one mean) media computing group

**One-Way ANOVA Output** 



- Each line shows variance for one IV
  - Significant p-values are indicated by one or more stars (\*)
- Report: "The choice of method had a significant effect on completion time, F(2.57) = 4.03, p = 0.02301."
  - Implies that there is a very low chance (2.3%) that the data would be like this if the method did not affect completion time.
- But: we do not know which method differs yet!



#### Post-hoc Test: Tukey's Test

- Compares means of data from each level against each other level simultaneously using *t*-tests
- Determines whether the differences between means are more than what the standard error allows
- Output: one p-value for each pair
- Below: significant differences between physical and other types, but not between stylus and touch





- When people play a first-person shooter, does their mouse acceleration influence the score they get?
  - What are IV and DV?
  - If we use between-group design, how should the data table look like?
  - Visualize data in a plot
    What should be on x-axis, y-axis?



# Demo: One-Way ANOVA

mobile lextiliput.csv

Please follow along on your laptop!



#### In-class Exercise: One-Way ANOVA



#### In-class Exercise: One-Way ANOVA

Model: score ~ acceleration Sum Sq Df F value Pr(>F) acceleration 1712212 3 233.23 < 2.2e-16 \*\*\* Residuals 88097 36

- Is the result significant?
- Run Tukey's test. Which pairs of means are significantly different?

16



DIS 1 — Jan Borchers

#### In-class Exercise: One-Way ANOVA

| Model: score ~ accele<br>Sum Sq E<br>acceleration 1712212<br>Residuals 88097                                            | eration<br>of F value<br>3 233.23<br>36                   | Pr(>F)<br>< 2.2e-16                                                  | ***                                                      | 2 ×10 <sup>-1</sup>                                             | 6                        |
|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|--------------------------|
| on - off == 0<br>placebo - off == 0<br>quasi - off == 0<br>placebo - on == 0<br>quasi - on == 0<br>quasi - placebo == 0 | 499.40<br>14.60<br>284.90<br>-484.80<br>-214.50<br>270.30 | 22.12<br>22.12<br>22.12<br>22.12<br>22.12<br>22.12<br>22.12<br>22.12 | 22.574<br>0.660<br>12.878<br>-21.914<br>-9.696<br>12.218 | < 2e-16<br>0.513<br>4.88e-15<br>< 2e-16<br>1.41e-11<br>2.26e-14 | ***<br>***<br>***<br>*** |

• What would you conclude from your results?

media computing group DIS 1 — Jan Borchers

#### Non-Significant ANOVA but Significant Post-hoc



#### Help! Non-Significant p-value

| Model: time ~ method<br>Sum Sq Df F<br>method 497.6 2<br>Residuals 3517.0 57 | <sup>:</sup> value Pr(>F)<br>4.0326 0.06301 |
|------------------------------------------------------------------------------|---------------------------------------------|
| stylus – physical == 0<br>touch – physical == 0<br>touch – stylus == 0       | Pr(> t )<br>0.0627<br>0.0387 *<br>0.5221    |

- If ANOVA doesn't report significance, post-hoc test is *not* enough to support your hypothesis
- Post-hoc test does not account for the variance caused between different conditions
- Increase sample size, or do Power Analysis (not covered here)

| DIS 1 — Jan Borche <u>rs</u> | 18 | media computing group |
|------------------------------|----|-----------------------|

#### Data Types

- Interval variables: there is a fixed magnitude of difference between two values
- Can meaningfully add two values
- E.g., task completion time, distance from the center of target
- One assumption of ANOVA is that the data is interval variables
- We often get non-interval variables, e.g., answers on Likert scales
- Ordinal variables: order is significant, but no meaningful arithmetic operations can be performed
  - E.g., "How easy do you think this statistics lecture is?"
  - OVery easy O Easy O Hard OVery hard



#### Non-parametric Tests

- Assumptions are less restricted than ANOVA (parametric)
- Less powerful: if the effect is small, you might not be able to detect significance
- Kruskal-Wallis test: non-parametric counterpart of ANOVA
- Wilcoxon rank sum test: counterpart of t-test for comparing each pair



### Demo: Non-parametric Test

sus l.csv

Please follow along on your laptop!



#### One-Way ANOVA vs. Kruskal-Wallis

| satisfaction | F<br>11.12308                    | df<br>(2 <b>,</b> 27) | ſ        | -value<br>0.0003 | 4 |
|--------------|----------------------------------|-----------------------|----------|------------------|---|
| satisfaction | Kruskal-W<br>chi-squar<br>12.841 | allis<br>ed d<br>55   | f i<br>2 | -value<br>0.0016 | ← |

- *p*-value of Kruskal-Wallis test is higher  $\Rightarrow$  easier to be non-significant
- Parametric method has more power to discover the significance

# ting group

#### DIS 1 — Jan Borchers

#### N-Way ANOVA

- For more than one IV, between groups
- Often found in research

DIS 1 — Ian Borchers

• Example: Does typing time for different input methods differ in different languages?



#### Main Effect

- Effect that each independent variable has by itself
- This graph: language has a main effect
  - Language changes task completion time, when averaged across all input methods
- Input method does *not* have a main effect

DIS 1 — Jan Borchers

 Input method does *not* change task completion time, when averaged across both languages



#### Estimating Main Effect with Marginal Means



#### Interaction

27

- Effect of one independent variable depends on the particular level of another independent variable
- Cannot conclude the effect of each independent variable overall
- Example: Does input method affect completion time in Task 1 and Task 2?
  - Interaction between task and input method
  - In Task 2, different input methods do not lead to different completion times
  - But in Task I, they do



media computing group

# DIS 1 — Jan Borcher<u>s</u>

#### Simple Main Effect

- Solution: fix the level of one interacting variable (treat as two separate experiments – with lower n)
- In our example:
- Different input methods do not cause differences in Task 2, but they cause differences in Task I



media computing group



#### In-class Exercise: Interaction Effects

• Look at the following graphs. Make an educated guess whether there is a main effect, interaction, simple main effect, or nothing.





#### In-class Exercise: Interaction Effects

• Look at the following graphs. Make an educated guess whether there is a main effect, interaction, simple main effect, or nothing.



#### Within-groups:One-Way Repeated Measures ANOVA

- Used for within-groups design because it reduces differences caused by each participant from between-group differences
- More powerful in the same data set
- But: Sphericity assumptions
- Variance between any two pairs of conditions do not differ significantly
- Determined using Mauchly's sphericity test: cannot assume sphericity if p < .05
- Assumption violated: Use corrected *p* values, e.g., Greenhouse-Geiser method



#### Demo: Repeated Measures ANOVA

feedback.csv

Please follow along on your laptop!



DIS 1 — Jan Borche<u>rs</u>

#### Beyond the Basics: What We Didn't Cover

- Assumptions for statistical tests
- We know: if the data is not interval, you cannot use ANOVA
- There are more assumptions, e.g., normality of the data or equal variances.
- There are statistical tests (Shapiro-Wilk, Bartlett) and visualizations (Q-Q plot) to check these assumptions
- Use transformation to change data to a form suitable for analysis (with some tradeoffs)
- Bootstrap procedures allow you to analyze the data by re-sampling
- What to do if your results are not statistically significant
- Try increasing the number of samples
- Use power analysis to determine the number of samples needed



#### DIS 1 — Jan Borchers

media computing group

### Summary

- NHST supports alternative hypothesis by indicating that if null hypothesis is true, the measured data is unlikely
  - *p*-value: Asssuming that the null hypothesis was true, this is the probability that the data would occur as measured
- One-Way ANOVA partitions variance from between-groups factors
- Tukey's Test: comparing all conditions pairwise to determine differences (post-hoc)
- Non-parametric tests: use only when parametric test assumptions are violated, e.g., non-interval data (Kruskal-Wallis something instead of ANOVA)
- Repeated-measure ANOVA does not assume independent samples. Use for within-groups design.
- Main effect, interaction, and simple main effect need to be identified when we have more than one IV

DIS 1 — Jan Borche<u>rs</u>

#### Beyond the Basics: What We Didn't Cover

- Counting and proportional data
- Distribution differs from interval data
- There are special tests for that, e.g., Chi-square
- Data from non-experiments (surveys,...)
- Correlational statistics allow you to draw some conclusions
- Modeling and prediction
- Linear or logistic regression allows you to create a model to predict output
- E.g., Fitts' law assignment



media computing group

#### Want More?

• Practical Statistics for HCI by Jacob O.Wobbrock, U. of Washington

37

- Independent study material with examples from HCI
- Uses SPSS and JMP (trial version: free download)
- http://depts.washington.edu/aimgroup/proj/ps4hci/
- Discovering Statistics Using SPSS by Andy Field
- Easy to read, lots of examples, detailed explanations
- SPSS is not required to understand the concepts
- Head First Statistics by Dawn Griffiths
- Mostly basic statistics and probability theory
- Helps getting the basics right for advanced understanding





